

Computer based modeling of the

Hungarian macroeconomic processes
MSc Thesis work

Author:

Consultant:

Date:

Course code:

Gergely Kovács

Dr. Béla Szikora

Dec 13. 2013.

BMEVIETM387

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Electronics Technology

Table of contents

Abstract ... 2

1. Introduction .. 3

2. Technical introduction ... 4

3. The database ... 6

3.1. Static data ... 6

3.2. The database model .. 7

3.3. Dynamic data ... 8

3.3.1. Data Series and Parameters ... 8

3.3.2. Charts’ database model .. 10

3.3.3. Forecast functions’ database model 11

4. Filling the database with data ... 13

4.1. Gathering and inserting data .. 13

4.2. Merging and loading data into the database 14

4.2.1. Merging data .. 15

4.2.2. Loading the data into SQL .. 17

4.3. Creating the Data Sets from static data 18

4.4. Mass producing charts ... 18

4.5. Administering the data .. 19

4.5.1. Chart Groups .. 20

4.5.2. Creating Data Sets and Charts .. 20

4.5.3. One time effects .. 23

5. Creating Object Oriented Environment 25

5.1. What objects shall I create ... 25

5.1.1. The Objects’ class diagram ... 26

5.1.2. Saving Singleton Object ... 27

5.2. The DataSet Object ... 28

5.3. The Chart Object .. 31

5.4. The SimulationModel Object ... 32

5.5. Other Objects created ... 33

5.6. Speeding up things ... 34

5.6.1. KISS – Keep it simple stupid ... 35

5.6.2. Techniques to accelerate processing 36

5.6.3. Assignments ... 36

6. Drawing charts .. 37

6.1. Creating Charts .. 37

6.1.1. The first Chart .. 37

6.1.2. Multiple charts, AJAX refreshment 39

6.1.3. Setting parameters for the Charts on the air 39

6.2. Improving charts’ user interface ... 41

6.2.1. Chart Range Filter ... 41

6.2.2. Show/hide columns ... 42

6.2.3. Group by months .. 42

6.2.4. Moving averages ... 43

6.2.5. An example of the charts’ interface 44

7. Forecasts ... 45

7.1. Handling forecast functions .. 45

7.1.1. Storing forecast functions ... 45

7.1.2. Applying forecast functions to the simulation 47

7.2. Defining forecast functions ... 48

7.2.1. The easy forecasts .. 48

7.2.2. Not that easy forecasts .. 50

7.2.3. Hard to forecast data series .. 51

7.3. One solution above all, SPSS .. 54

7.3.1. Regression functions .. 56

7.3.2. Creating SPSS database ... 57

7.3.3. Running regression functions automatically 57

7.3.4. Building up the graph, and dropping it 59

8. GUI .. 61

8.1. Adding charts, using topics .. 62

8.2. Presets .. 63

8.3. Chart Editor ... 63

9. Summary ... 65

References ... 66

List of figures .. 68

A. 1. Appendix – Source Codes .. 69

Drawing Chart, JavaScript and PHP codes ... 69

Singleton Object .. 72

SimulationModel’s Build Up ... 73

Saving all charts’ thumbnails JavaScript.. 73

Exporting database for SPSS ... 74

1

HALLGATÓI NYILATKOZAT

Alulírott Kovács Gergely, szigorló hallgató kijelentem, hogy ezt a

diplomatervet meg nem engedett segítség nélkül, saját magam készítettem,

csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel.

Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de

átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával

megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és

magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME

VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes

szövegét pedig az egyetem belső hálózatán keresztül (vagy hitelesített

felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és

annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított

diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik

hozzáférhetővé.

Kelt: Budapest, 2013. 12. 13.

……………………………………………….

 Kovács Gergely

2

Abstract

The following thesis, concluded in the Business IT MSc program of the

Budapest University of Technology and Economics, introduces a

macroeconomic analysis framework, in which anyone can browse actual

data, view forecasts, and simulate the effects of changing macroeconomic

parameters. The system is available at: www.macrosim.hu

The thesis, after a brief introduction, first describes the software

development tools which were used during the implementation.

Next, the database model will be explained. The chapter will provide the

necessary background on how the information is stored and accessed. Also,

I will explain the reasons of this design.

After, I will show how the data was put into the database, straight from the

data sources, namely the Statistical Office and the National Bank of

Hungary. Furthermore, this chapter introduces the administrative tools,

needed to handle the data through the GUI (Graphical User Interface).

Chapter 5 describes the object oriented environment of this system. I will

explain what kinds of objects were created, how they are instantiated and

how they communicate in order to draw charts.

Chapter 6 explains how charts are drawn. The explanation also includes the

improvements I have made to make the GUI more user-friendly.

Chapter 7 describes the forecast functions. The first part is about creating

and storing them, while the second part is about specific forecast functions.

This chapter is the essence of this thesis, as all the rest was created on the

sole purpose to be able to create forecasts in the way, which is described

here.

Finally, I will write a few words about the GUI, how it looks like and how it

works. A lot of development had to be done, in order to access functions

through the interface, I will also name and explain these.

3

1. Introduction

Since I was a kid, I was looking the financial data every week at the last

pages of a newspaper called HVG, a Hungarian newspaper similar to The

Economist. Thanks to my parents, who have bought various kinds of

newspapers, I had the opportunity to develop and satisfy my data browsing

needs. Fast forward to recent years, this desire just grew further, driving

me towards analysis, to financial analysis in particular. After writing a few

articles, evaluating a few business plans, I have decided to create a system

which helps me analyzing various data.

Whenever I have to make an analysis, mainly in macroeconomics, I do not

have the tools to set parameters comfortably, or to access the needed data

quickly and easily. Moreover, I found a growing interest for reliable articles

in economics in Hungary, explaining what is happening and for what

reasons.

All these factors led me to the conclusion I should develop a program, more

likely a framework, which helps anyone to understand basic connections

among macroeconomic data. Meanwhile I also fulfill my hunger for in-depth

analysis, and my wish to express my capabilities of understanding and

implementing such complex systems.

The program I developed, and which I will introduce in this thesis, has

multiple objectives. The first is to make simple forecasts on any kind of data

sets. These forecasts are based on a wide variety of functions starting from

statistical methods, till reverse engineered connections. The second is to

show mid-term effects of present changes. Third, I would like to create a

framework, what could be used for any complex modeling, regardless of the

data itself, not just for macro-economic modeling. Finally, I hope this

program could serve the educational and online journalism goals as well, for

which, I believe, there is need for in Hungary.

4

2. Technical introduction

In this chapter I would like to briefly introduce the languages, tools and

software packages that I used during the development and implementation.

I wanted to make my simulator available on web, hence I chose PHP/MySQL

as a basic platform for development. All the rest were chosen to fit this

environment.

All the data are stored in MySQL tables, which are processed by PHP scripts.

These scripts not just handle the data themselves but the simulations are

also implemented in PHP, so are the source code generations for the

HTML/Jscript modules.

I did not use any programming framework, like Eclipse, during the work.

The reason was, I am not familiar with these environments and I did not

want to waste time learning them now. Later, as I bumped into bugs and

naming errors all the time, I regret this decision.

Software, libraries and tools

I needed some software packages to make both the implementation and the

documentation easier. Without any detailed description of these packages, I

would like to briefly introduce them.

MySQL Workbench, Navicat

MySQL Workbench is a free software package which helped me not just

creating and managing my database but it also gave me an easy way to

edit my data well before I finished the administration interface. Additionally,

the software offers comprehensive modeling tools, which helped me a lot in

the designing and understanding of the database model. All data model

screenshots in this document originate from this software.

I have also used Navicat’s database manipulation software, which helped

me inserting and updating data on a massive scale, what was not supported

by the MySQL Workbench.

5

PHP/Apache/HTML

The simulator itself is written in PHP language, which also handles the

database results and the GUI. The program runs on a dual Xeon server with

Linux/Apache. Writing the PHP classes was the main part of my work as I

will show later in this document.

Visual Paradigm

The class diagrams were generated by a software called Visual Paradigm,

which I found fitting my needs. The software also supports creating UML

diagrams. This software would have been able to help in implementation as

well, but I did not use it, mainly because I had to write code parallel in

other languages, namely in JavaScript, and this program could not handle

both at the same time.

Google Chart Tools

To draw charts easily, I chose to use Google’s Chart Tools [1] together with

JQuery, a widely used JavaScript library, which made GUI programming

substantially easier and faster, giving me more time to focus on my real

task: designing. During my work, I found many bugs and missing features

in Google Chart Tools, which I have posted to the official forum [2].

JQuery UI

As a well-known and widely used free package, JQuery UI helped me

programming the Graphical User Interface to make my program easily

usable. Also, this package allowed me to develop my own interactive charts.

SPSS

Finally, I used IBM’s SPSS to find regression functions among variables.

Even though I found many other statistical programs, some of them written

in PHP [3], SPSS proved to be the fastest and most fitting for my needs.

6

3. The database

In this chapter I will introduce the database that I built during my work. The

most difficult part was to create a database model which resonates with my

program and its objects. As I advanced in the implementation, and new

ideas have surfaced, the database had to be adjusted constantly, until it

took its final shape, which is presented here.

I will not fully explain every part of the database. For example the database

model of forecasts will be introduced in this chapter but elaborated later, in

chapter 7. Yet, I wanted to present a comprehensive picture of the

database, in order to show how all the data are connected in one model.

My database consists of static and dynamic data. Static data function as a

repository, while dynamic data are used by my program.

3.1. Static data

I refer as static data to everything related to statistical (not changing) data,

which I want to use or forecast during my work. Among many, these data

include the budget balances, GDP, prices, tax rates, etc. I store them in

separate data tables, that usually match the structure of the downloadable

excel files of the Central Statistical Office and the National Bank of Hungary.

Since I had to write this thesis in two semesters, I had a long summer

break, after which I have returned to my work. The update of all the data,

roughly 600 columns in 20 tables and 4-5 months of records, took about 4-

6 hours only. Creating data tables similar to the official ones, and filling

them with the help of Navicat, which can ‘copy-paste’ data from excels into

MySQL, made this part of the work very easy.

However, it was not always this easy. While creating data tables for prices

or GDP data were fast, creating a database table for the budget data took

an entire day itself. I will describe this process later, in chapter 4.

7

3.2. The database model

Figure 1 - The database model of the program

As you can see, the central part of the database model is the ‘dataset’ table.

This is also true for the PHP Objects, where the DataSet object serves as

the backbone of my system. Once we understand the datasets, as I use

them, the rest will be crystal clear.

8

The tables are connected through foreign keys, generally with the setting

‘on update: cascade’, ‘on delete: restrict’. With these, I can keep my

database consistent and avoid accidental deletion of precious information.

As usual, the downside of security is, deleting a dataset, or a chart, might

be very uncomfortable as I have to delete the corresponding information

first.

3.3. Dynamic data

Dynamic data are the changing ones: chart settings, forecasts, GUI screens,

etc. Basically all data, that are stored in the data tables shown on the figure

above, are considered as dynamic data.

3.3.1. Data Series and Parameters

These two are all the same. I decided not to make distinction among these

types of dynamic data. Every data set is considered as a data series (or a

set of series), which can be also drawn on a chart, or used as a parameter.

This decision proved to be a very easy way to handle both charts and

forecast functions later. Making certain parts of these data modifiable, made

them useable as parameters as well.

As a rule of thumb, when I write ‘data series’ I usually mean one piece of a

2 columns data series. In case of ‘data sets’ I usually mean a few data

series, which are basically populated from one data series. For e.g.: ‘yearly

births’ is a data series, where the first column is the year, the second is the

number of children born in that year. Whereas forecasted births, together

with actual births, form a dataset. In the DataSet object, explained in 5.2,

these are present at the same time, in one object; resulting, every type of

‘births’ related data is accessible in one instance of the DataSet object.

Also, I can use any data series as a parameter, for e.g. fertility rate for

births’ forecast function.

9

The database model for DataSets

Figure 2 - Database model of DataSets

 datasources store the name and urls of the entities, where the data

has been acquired from. Such entities are the Statistical Office, or the

National Bank of Hungary. Every time, I draw a chart, the ‘source’ of

the data shown is based on the information stored here.

 onetimeeffects store special items, like court decisions, which have

altered the raw data, and should be excluded from forecast functions.

For example, Hungary had to pay back roughly 140 billion HUF of

value added tax to companies in December 2011, which payback has

distorted that month’s data. Any function, which uses value added

tax income as a parameter, should exclude this item.

10

 datascreens are lists of datasets, to help the users understand the

structure of the available data. These screens are shown on the GUI,

and help navigating among datasets. Every datascreen can hold

multiple datasets, hence the datasetsindatascreens table.

 datasetsinderived is a list of datasets being in other datasets, namely

in derived data sets. Derived datasets do not use any static data,

rather they are calculated from other datasets. For example

unemployment is a derived dataset, and it is calculated by dividing

two datasets: the number of unemployed by the number of

economically active. More about derived DataSets can be found in

5.2.

3.3.2. Charts’ database model

Figure 3 - Database model for Charts

11

A Chart is nothing else, than a combination of data series, which we want to

draw up in the same graphic.

 dataseriesincharts is used by every chart as they can contain multiple

data series, those which we want to draw up. For example the chart

of ‘taxes on consumption’ holds seven data series, from value added

tax, through excise tax, till financial transaction tax. Through this

database table, we can associate multiple data series to one chart.

 chartgroups are used to group charts together, to help easier

administration.

 screensets are similar to datascreens, they serve the goal to help

users navigate among charts. Every screen set, for example ‘Labor´

can contain multiple charts, like employment, economically active,

and unemployed. With screen sets, the user can access multiple

charts with one click. More about screen sets can be found in chapter

0.

3.3.3. Forecast functions’ database model

Figure 4 - Database model for forecast functions

 forecasts hold the forecast functions for each dataset. Moreover every

dataset can have multiple forecast functions.

12

 forecastsreferences serve the purpose to store any kind of article, or

other sources, on which the actual forecast is based on. For example,

an oil price forecast function can be based on an article, written by

the Energy Information Administration (US). This source can be

stored as a reference of the actual forecast function. Along with the

source of the data, these are also shown with the charts.

 forcastsdsusage is a list of datasets which are used by the forecast

functions. For example, births use fertility rate and population. This

database table serves the goal, to be able to build up a graph for the

entire Hungarian macro economy, or any other modeled system

thereof, and see which datasets are at the core, or where are the

loops in the model.

13

4. Filling the database with data

After preparing the database, to receive and handle any data series in a

unified way, I started to fill it up with data. Adding a multi-column, multi-

year monthly series to the system and creating the connecting charts and

their related information took only minutes. In this chapter, to demonstrate

the process of inserting data, I will walk through the steps of how I inserted

the entire Government Budget data, since 2007, into the database.

4.1. Gathering and inserting data

At first, I wanted to download all the budget data from the Treasury’s

website [4]. To do this nicely, I used ‘wget’ [5] limiting downloads to the

downloadable links.

wget -r -Q100000k --content-disposition -e robots=off -I /letoltesek

http://www.allamkincstar.gov.hu/kincstar/koltsegvetes_merleg_1/2

This resulted, all the monthly budget information in excel files arrived to me

pretty quickly: Downloaded: 138 files, 26M in 3.2s (8.05 MB/s). These

included budget incomes and expenditures from 2002 till today, on a

monthly basis. Sadly, some files were in .pdf, instead of .xls.

Doing the same with Social security funds, resulted 206 more files, 64

Mbytes total; continuing with extra budgetary funds, resulted 122 files, 98

Mbytes. I also downloaded Budgetary Institutions, Chapters data, which

basically includes the budget of the ministries, 187 files, 34 Mbytes of data.

Investments were 135 files, 19 Mbytes. These were also available from

2002, as all the above.

With these all the budgetary information were downloaded. Some local

government data is also available on the website but I skipped those, since

looking them closely they seemed less important at this stage of the

development, so did later. All together 776 excel files, 250 Mbytes

combined, were waiting for me to process and put them into the database.

14

I have also downloaded several other data from the Statistical Office’s page,

like employment statistics, also from the National Bank’s homepage, like

the balance of payments. But, in this chapter, I would like to introduce how

all the budget data got into the system. It was the same but simpler

method for every other data as well.

4.2. Merging and loading data into the database

This has been the first, not strictly IT task on the path to fulfill my goal.

Sadly copy-pasting the excel files into MySQL was not a viable solution.

There were a lot of different rows in the budget balances from the last 7

years, which had to be merged, before inserting them into the database.

Furthermore, taxation has changed almost every year; not just tax rates

but new taxes have been introduced, such as sectorial taxes for banks,

telecom companies, while others have disappeared, like payments from the

pension reform fund.

It seemed the easiest way to create a blank excel sheet, including all the

items which have ever occurred in the budget during the past several years.

Into this document I can also put the fresh data later. Furthermore, this

sheet will be the exact mirror of the database’s budget table.

A monthly budget report’s raw excel file looks like this one:

http://www.allamkincstar.gov.hu/letoltesek/10807. As one can see, this

includes both monthly and cumulative data, but also includes year-to-date

combined data for every month, luckily. As a result, I had to open the

December balance sheets for every year only, to access every month’s data.

Looking a report closely, there are about one hundred rows for income

items and about eighty for expenditures. These are going to be data sets in

my database, all of them, uniquely, named and associated with charts.

15

These rows are also the subjects for my simulations and forecasts. Meaning,

my goal was to create a forecast for each and every one of them. Do this by

using unique functions and other data series, like tax rates, statistical data

(retail, trade, forex), and by including one-time incomes/expenditures, such

as court decisions or nationalizations.

Figure 5 - Budget balance report for 2013 Jan-Feb, incomes and expenditures

4.2.1. Merging data

I started from this year’s data, seen on the figure above, and I continued

backwards. Meaning I put the 2 columns available (at March) for 2013 into

an excel file. Then, I inserted 2012 data before them. This resulted a few

rows appeared as shifted. For example, there were no Telecom, Financial

transaction and Insurance taxes in 2012, so these rows, as empty ones,

had to be inserted for the year 2012, and revenue from the pension ‘reform’

was non-existent in 2013, so an empty row had to be inserted for 2013.

Then, these two years’ items became synchronous, as they finally had the

same items.

16

I was doing this for expenditures as well, then continued with the year of

2011 and so on. Meanwhile, after finishing a single year, I performed some

random checks, whether the sums of rows equaled the totals, defined

originally in the downloaded excels. This was necessary to assure myself

that rows did not shifted wrongly and sums were still correct after

adding/deleting extra rows. Such checks were also performed after I was

able to draw my charts.

Moreover, during the years, some items were merged or separated in the

balance sheets. For example in 2010, ‘Budgetary Institutions’ income was

made out of 3 items, two of them were called ‘Own revenues’ and ‘EU

support’. However, since 2011, they were merged as ‘Own revenues’. As

budgetary income is usually analyzed together with budgetary

expenditures, it does not really make a difference for me but even if it did, I

had no data to be able to separate it again.

Also ‘Budget Reserves’ were called differently until 2010, than later. In

cases like this, I usually used the latest naming, to make it easily

identifiable to anyone, who is following Budget Data in general, nowadays.

From 2009, and earlier, Extra Budgetary Funds were not included in the

budget balance sheets, therefore, I had to dig out each line separately from

those excels which were downloaded earlier and had these data. It was not

trivial, since the breakdown of the items was not exactly the same as it is

nowadays. The method was, I looked up the 2010 excels, both the budget’s

sheets and extra funds’ sheets, and memorized the data I found. Then I

searched for these data in the budget balance sheets, to be able to deduct,

which items I needed. From that point I knew, which items to use exactly,

from 2009 and earlier, and include in the budget balance, to match

nowadays naming.

For example “Other Expenditures” is the sum of “Active Subsidies” +

“Vocational training subsidies” + “Rehabilitation purpose job creation

subsidy”. So these had to be summarized separately and inserted into the

budget balance. The same method was applied to Social Security Funds.

17

Of course another solution could have been to create a separate data set for

all the Extraordinary Budget Fund’s items, but I did not do that. Later it can

be done, if needed, and the Data Set replaced with a derived Data Set.

Sadly, the social security funds’ detailed data and the extra budgetary

funds’ data are not available prior than 2007. Moreover, the format of the

budget report is different prior to 2007, so I decided not to store monthly

budget data prior than 2007. As my objective is forecasting the future, this

did not seem a big sacrifice. Still, they could have been useful for quality

assurance purposes.

Merging Budget data for 2007-2013 took a couple of hours, and it was just

creation of the excel file.

4.2.2. Loading the data into SQL

I renamed all row names to lowercase, cleared white spaces, quotation

marks, etc. Also, I gave prefixes for some of them, such as ‘budget_inc_’

for budget incomes or ‘psf_exp_’ for pension funds expenditures. This was

necessary to avoid column name duplications. Also, clearing summary rows,

like taxes on consumption, were necessary as these became derived data

sets.

At the end, I had to transpose the table to fit SQL requirements, so dates

will be the rows and budget items will be the columns. It looked like this,

with 127 columns.

Figure 6 - Budget data 2007-2013 merged into 1 excel sheet

18

Navicat can import excel files into MySQL with creating the MySQL table as

well, so it went smoothly, in a second. All the rest above took about an

entire day.

4.3. Creating the Data Sets from static data

Since I renamed all items, I decided to use the column names for the data

set names as well. It is not that nice, but simple and fast. Also, data set

names do not appear for the users, so it is basically irrelevant, how I call

them, as long as the names are unique.

insert into datasets (nameen,tablename,columnname,parameter,isderived,frequency)

VALUES ('Budget inc corporate

taxes','budget','budget_inc_corporate_taxes','0','0','monthly');

Creating datasets for all the 127 columns took seconds with a few replaces

in a text editor. Later, I created separate and visible names as well, like

‘Budget – Incomes – Excise Tax’ both in English and Hungarian. Doing that

for ~600 data series also took some time. These names appear on the GUI.

4.4. Mass producing charts

After inserting 127 data sets into the database, I did not want to create all

charts one-by-one and by hand, nor their thumbnails for the GUI. So I

decided to write a few scripts to do these.

First, I had to create charts, basic, line charts, not used as parameters, but

containing forecasted data series as well. I selected the new dataset names,

then, I created a chart with the same name and added the 2 types of data

series onto it. This was done by the following PHP script, which shows the

creation of 2 charts only, but I have had 127 of these. The script was

created by RegExp search/replace functions mainly in a text editor.

It is worth to note, I used similar techniques in many cases; namely,

generating a program code with another program, instead of doing a

specific function on a one-by-one basis.

19

$db->rq("insert into charts

(chartgroupid,isparameter,parametertimeperiod,charttitle,chartshortname,charttype,h

axis,vaxis) values (3,0,'monthly', 'Budget inc corporate taxes',

'budget_inc_corporate_taxes', 'ColumnChart', 'month', 'mln huf')");

$chartid=$db->last_id(); $typeid=1;

$db->rq("insert into dataseriesincharts (datasetid,chartid, typeid) values (142,

'$chartid', $typeid)"); $typeid++;

$db->rq("insert into dataseriesincharts (datasetid,chartid, typeid) values (142,

'$chartid', $typeid)"); $typeid++;

$db->rq("insert into charts

(chartgroupid,isparameter,parametertimeperiod,charttitle,chartshortname,charttype,h

axis,vaxis) values (3,0,'monthly', 'Budget inc surtax of corporations',

'budget_inc_surtax_of_corporations', 'ColumnChart', 'month', 'mln huf')");

$chartid=$db->last_id(); $typeid=1;

$db->rq("insert into dataseriesincharts (datasetid,chartid, typeid) values (143,

'$chartid', $typeid)"); $typeid++;

$db->rq("insert into dataseriesincharts (datasetid,chartid, typeid) values (143,

'$chartid', $typeid)"); $typeid++;

After having the charts in the database, I made them appear on the screen

and saved their thumbnails with a JavaScript function, so the user can see

their little thumbnails whenever he/she opens the chart library. To do this, I

needed the following JavaScript and a little PHP code to save them. This

tool proved to be very useful as I am regularly using it whenever charts

change, or new static data is inserted, so new thumbnails are needed.

Generating and saving the ~1000 charts takes about 2 hours for the script.

The code for saving the thumbnails can be found in the Appendix. It opens

the chart in small, saves it, and closes it, then opens the next one. The

image rendering is done by the browser which sends the base64 encoded

data to a PHP script, which saves it into a .png file. With this solution, I

generated and saved all budget charts in 15 minutes.

4.5. Administering the data

I have created a chart administration interface, which is available for

registered users, only with the appropriate rights.

20

4.5.1. Chart Groups

Figure 7 - Chart Groups Admin

First I have to create the chart groups to which certain charts will belong.

The purpose is to group charts together. This is easily done by the interface

seen on the figure above. All the updates/changes are made through Ajax.

Also deleting already used chart groups is impossible as they are connected

to ‘charts’ MySQL table with a foreign key, therefore MySQL restricts

deleting this record.

4.5.2. Creating Data Sets and Charts

Then, after having the data series available in the database, I have to

create Data Sets, regular and derived ones as well. I can do both on the

following screen, where I can easily define Data Sets and whether they are

originated from a table’s column in MySQL or are derived ones.

Figure 8 - Defining a new Data Set from a SQL table column

21

For example, I created ‘VAT income’ Data Set out of the budget table’s

‘value_added_tax’ column. This Data Set will be added to the Chart of ‘VAT

income’. As you can see on the figure below, the VAT chart has to be

created then the Data Set defined above added to the Chart. Both the

actual and the projected data, distinguished by ‘typeid’ 1 and 2.

Figure 9 - Creating a new chart and adding Data Set into it.

I also wanted to create a stacked column chart (see below), which includes

all consumption related tax incomes. Therefore, I had to add the VAT Data

Set to this chart as well (1st chart definition above, on Figure 9). So I can

use the same data sets in two charts: first, in the stacked one containing all

consumption taxes, second in the one with the forecast for VAT. The

purpose is, while on the second one I can show forecasted data for VAT

income, I cannot do that on the first, stacked, chart. The problem is: Google

Chart Tools is unable to create multi-bar stacked charts. Resulting, if I want

to make a forecast on consumption related tax incomes, as a whole, I have

to create a 3rd chart as well, containing the combined value of these tax

incomes.

22

Figure 10 - Stacked column chart on consumption related taxes, actual data

To do that, I had to create a Data Set, a derived one, which is the sum of

the consumption related taxes and for which I can create a forecasted

column on the chart (2nd chart definition on Figure 9). I created a derived

Data Set, an empty one, and added the related datasets into it. The

‘operation’ (see on the Figure below) defines what operation is evaluated on

the member data series. Then, I can add this new data set to a new Chart

which will show the forecasted data for the sum of taxes on consumption as

well.

Figure 11 - Creating derived Data Set with any kind of operation on the members

All this is necessary to be able to create a forecast for all budget items later,

without knowing what is inside the program code, what exactly I am

summarizing. Hopefully, stacked multi bar charts will be available in Google

Charts soon.

23

4.5.3. One time effects

In many cases, actual values are distorted by one-time factors, such as

court decisions, changes in laws, privatization or nationalization, etc.

These factors must be excluded from the forecast functions’ source data,

but they must be included in the forecasted values. To make it clear, in

December, 2011 the Government had to pay back a big amount of VAT to

companies, because of a Brussels court decision. It caused a big drop in

that month’s VAT income. However, when I make a forecast for next years’

December, I should exclude this item, since I use previous year’s data in

my forecast function, what should not be distorted by one-time effects

when we use it as a base period.

Fun fact, the government itself seems forgetting this obvious rule of

excluding one-time effects. They have forecasted 2950bln HUF of VAT

income for this year (2013), but they forgot there was a one-time income,

about 140bln HUF, in 2012 April, which increased 2012’s data to 2750bln.

Altogether, the government was extremely optimistic, as it basically

forecasted VAT income to increase from 2610bln (without the one-time

income) to 2950bln. As of today, after the first 10 months, the VAT income

is exactly the same as last year, 2250bln, and assuming slightly better last

two months, it will end around 2800bln HUF, missing the target exactly by

that one-time amount.

Therefore, when creating the dataset, I subtract one time effects from the

’Actual data’, which creates the ‘Combined data’, from which forecasts are

calculated. After the calculation is done, I re-add it to the forecasted value,

so the net effect is zero in the result, but in the forecast functions, these

factors got excluded. It is like the government should have used 2610bln

for forecasting this year’s data, instead of the raw data. And when

simulating past forecasts for 2012 April for e.g., they should add one-time

effects after the calculations are made, to get the right results.

24

Figure 12 - One-time effects on Value Added Tax incomes

Figure 13 – Without (left) and with (right) one-time effects on VAT

Did the Government lie?

The government in 2011 communicated they had to pay back approximately

240bln HUF of VAT, but as you can see, the forecast function gives close

approximation to the actual data with a 140bln HUF one-time amount. This

means, either my forecast function is very bad and mysteriously it gives a

good result everywhere else, or the government just lied, so they can mask

a 100bln HUF hole in the budget and blame it on Brussels.

Furthermore, simulating the law change affecting next April’s VAT income,

also gives a close approximation with the very same amount. We already

knew that it was on purpose to get back the money for the budget they

have lost earlier. Just a speculation, but if the government’s goal was to get

back the same amount of money, all this would make sense. Regardless of

the fact, they have communicated differently.

Additionally, if we take a look at the 12 months moving sum of VAT income,

we will find, the amount dropped in December, 2011 by 130bln (court

decision), and in May 2013 by 122bln HUF (when 2012 April’s one time

effect flushes out), supporting the ideas above.

25

5. Creating Object Oriented Environment

I had to create a reliable model in which I can work with many kinds of data

easily. In PHP, especially on a webserver, it is not that easy to keep objects

alive. Well, basically it is impossible, but we can at least make it look like

that a running program is in certain state.

On a webserver every page request through HTTP Protocol makes PHP to

recompile the source code and run it from the beginning. Therefore, objects

cannot exist between these sessions. We can save objects’ data on the

server between these sessions, but that is not exactly the same.

Also, my objects should reflect the database model’s structure; otherwise I

made a mistake designing either the database or the objects, since the

database generally serves to store data for objects.

5.1. What objects shall I create

At first, I wanted to create an object for every data set that I thought

belong together; like putting births, population, fertility rate, etc… all into

one object and name them ‘Births’, ‘Population’, ‘Fertility rate’ respectively.

But, as my code evolved, I had to drop this idea. I was trying to create an

object called ‘DataGroup’, and make Population as an extended class of it,

but even that proved to be useless.

As I already stated, every data I am using is basically a single 2 columns

data series, either they are monthly, quarterly or yearly, they all are the

same. So I could not find any reason not to handle them the same way. I

decided to make 3 objects as the core of my simulator; these are: DataSet,

Chart and SimulationModel objects.

26

5.1.1. The Objects’ class diagram

Figure 14 - Class Diagram

27

Figure 15 - Component Diagram

The general flow of data is counter clockwise on the diagram. The

SimulationModel creates the Datasets and Charts according to the DataBase

information. Charts receive the DataSeries from the SimulationModel (which

gets them from the DataSets). Then Charts provide the information for the

GUI. While the GUI can modify the DataSets and restart the cycle.

5.1.2. Saving Singleton Object

Before creating my objects, the biggest challenge was to keep a Singleton

Object, an object which cannot be instantiated more than once, alive

through page loads. Generally PHP can store any data between the sessions

in the $_SESSION global variable. However storing objects is not that

simple. The two main problems are: private variables and private functions

are not seen from the outside (depends on PHP version), and saving

resource type variables, such as database connections and file handlers,

through sessions are forbidden [6].

28

Therefore the database connection had to be initialized every time, and its

handler put into a global variable to be accessible everywhere.

About saving objects, it was tricky. You can serialize() any kind of object,

but since you might be unable to see inside the object, I had to create a

serialize() and unserialize() function inside every object, which I wanted to

keep alive. After, I can put this string into the $_SESSION and restore it

later. This will not keep my objects alive, but at least, it will make them

look alive.

With this all I had to do was to initiate the saved objects on every page

load, and save them again at the end. A similar solution can be found at

[7], whereas my implementation is shown in the Appendix A.1.

5.2. The DataSet Object

This is not a singleton, moreover, it will be instanced in the SimulationModel

object, therefore it is enough to keep the SimulationModel alive across the

sessions and it will automatically keep the DataSets alive too.

A dataseries is a simple 2 columns array, where the left (first) column

contains the keys, namely dates, and the right (second) column contains

the appropriate values. DataSet contains some Data Series, usually the

versions of one series. Every DataSet has a name, which should be unique,

but the parent object will guarantee that, when it creates them.

DataSet reads the actual data from the database with a private function

guaranteeing no one else can access the database, names the fetched data

as ‘actual’, and also creates ‘projected’ and ‘combined’ arrays, the latter

with references to the actual series. The object is also responsible for

creating monthly, quarterly, and yearly versions out of any kind of data

series. It has also a clearing and modification function to alter all but the

actual data.

29

The purpose of the first two series (actual and projected) is to put them on

charts. The combined series is used for simulations, as it has to be the

combination of these two. Generally forecasted data is added to the actual

data, and where they overlap, the latter is used. So, if forecasted data

overlaps with the actual (in cases when I date back the start of simulation),

then I use the forecasted to make further forecasts. I needed this, to be

able to make forecasts starting from earlier dates, and base later forecast

values on already forecasted data. For example, if I have a forecasted data

for 2013, I use it as a basis to forecast 2014, instead of using the actual

data from 2013. This is on purpose to see how accurate the forecasts would

have been for 2014, if I had run them at earlier time, like in 2012.

Derived Data

Data Sets can be created as derived ones out of other Data Sets, for

example Births/Population, Debt/GDP. To achieve this, a slight adjustment

was needed. The constructor has to be able to handle the extra parameters

defining member data sets. Also Simulation does not (and should not)

update derived data.

I had to make a function inside the DataSet object, which updates data on

demand (for example: when JSON data is needed to draw charts). So I do

not recalculate them every time. Also SimulationModel has to maintain a list

of DerivedDataSets as well, in order to know on what objects to call the

UpdateDerivedData() function. While MySQL tables had to be changed to

store the extra information, but the way of assigning these type of data sets

to charts remained the same.

Additionally, the UpdateDerivedData() function has to be recursive in case

the derived DataSet is built from other derived DataSets. An example for

this is Unemployment Rate, which uses Economically Active data set which

is also a derived one. In the GUI admin panel, they look like this:

30

Figure 16 - Derived data set as member of another derived data set

Derived data sets may also use Interpolated() data. For example GDP /

capita is a quarterly series even though Population is yearly by default. To

solve the situation, I had to implement an interpolation function inside the

DataSet which calculates the missing data. I was thinking a lot whether to

make it a spline interpolation a.k.a. C2 continuous curve [8], but at the end

I decided to ‘keep it simple’ and make it linear.

The downside is interpolated data can consume memory which would not be

a problem in normal case but here, were we save/load the entire model

with its data at every HTTP page request, it may count. So I also

implemented a RemoveInterpolated() function which recursively calls itself

on it children datasets (from which it is derived) and clears the interpolated

data. Of course interpolated data must be produced on demand again.

The quarterly interpolated data for population is about 10Kbytes and this is

just the actual data, not the forecasted. Speaking about 10s of charts this

could have been easily up to the megabytes territory. The Simulation itself

may also use the interpolated data, therefore removing it on Chart destroy

might be a bad idea, as it may spoil other forecast functions. It is easily

solvable with a lock flag inside the object. Or, another solution is to

calculate the interpolated data inside the forecast functions, which would

like to use them. It saves memory, but consumes processing time instead,

as we may actually calculate the very same interpolation multiple times in

one round of simulation.

To make creation of derived datasets easier, their definitions were also

moved to the MySQL. This has caused some problems, because some of the

derived data sets are derived from other derived data sets, where the latter

are defined later in the database. Hence, when creating a derived data set,

children data sets might not exist at that point. The solution was to build up

derived data sets recursively, by creating children first, if they do not exist.

31

5.3. The Chart Object

The Chart object is a little more complicated. It is designed to fit Google

Chart Tools’ needs. It has all the variables needed to fulfill chart creation,

and it also has the functions to provide the data needed to draw charts.

Charts are stored in MySQL, their names, titles, axis texts, etc. They are

empty charts with all the necessary information beyond the data series

themselves.

Therefore, once a new Chart is instanced, also from SimulationModel, it has

to be filled with data. The solution is SimulationModel has an AddSeries()

function which receives DataSet types. More specifically: 2 column data

series.

Every chart could operate as a parameter chart, if the database information

allows. This means, I can create 2 charts from the very same data series

but I have to administrate, whether it is a parameter chart or a regular one.

This is needed for the JavaScript functions, as both might be visible at the

same time.

To fulfill this duty Chart has a defined container in JavaScript, which

depends on the ‘isparameter’ setting. Note: I can make a call to draw the

chart as parameter but if the database does not allow, the JavaScript will

not be able to draw. When a Chart is instanced in JavaScript, its container

value is set properly depending on whether it is a parameter chart or not,

and the container name is returned. So the JavaScript knows exactly, where

to draw the newly instanced chart.

Chart object also handles the Ajax answers for any chart related information

request, such as JSON data for Google Charts or the HTML code of a

parameter chart. Since the Chart object knows which series are assigned to

itself, it can provide these answers. The parameter chart, as a whole, was

created by me, in order to be able to modify bar charts, hence the HTML

code is the return value, when creating such a chart.

 After all this the creation of the Total Population chart looks like:

32

$SimulationModel=SimulationModel::getINstance();

$SimulationModel->AddChart(”totalpopulation”,$_REQUEST["isparameter"])->Draw();

$SimulationModel->GetChart(”totalpopulation”)->AddSeries

('actual', $SimulationModel->GetDataSet(”totalpopulation”)->GetActualData(), 0);

$SimulationModel->GetChart(”totalpopulation”)->AddSeries

('projected', $SimulationModel->GetDataSet(”totalpopulation”)->GetProjectedData(), 1);

$SimulationModel->GetChart(”totalpopulation”)->PrintJSONData();

In this case the DataSet was named the same as the Chart, but that is not

necessary. The hard coded “actual” and “projected” variables are the label

names appearing on the charts. This is hard coded only one place, hence no

need to make a variable for it.

The three most important functions are: PrintJSONData() (see Appendix)

which provides the data for the charts, GetContainer() which returns the

container name for the JavaScript, and SetAsParamChart() which sets it to

appear as a parameter chart in case it is allowed and called as a

‘paramchart’. This function is also responsible for naming the container

properly.

function GetContainer() {

 return $this->container;

}

public function SetAsParamChart() {

 if($this->isparameter && $this->drawasparameter) {

 $this->charttype='parameter';

 $this->container= self::GetContainerName($this->chartshortname, 1);

 return true;

 }

 return false;

}

public static function GetContainerName($chartname, $isparameter) {

 $container=$chartname;

 if($isparameter) $container.="-parameter";

 return $container;

}

5.4. The SimulationModel Object

After dropping earlier ideas and implementations, I created this object,

which is a Singleton, and handles DataSets, Charts, and the simulation

itself.

In its constructor it creates the datasets, all of them, but does not create

any charts. Those are instanced on demand in order to lower memory

usage.

33

private function __construct(){

 $this->TotalFertilityRate=self::AddDataSet('population', 'totalfertilityrate');

 $this->TotalPopulation=self::AddDataSet('population', 'totalpopulation');

 $this->Births=self::AddDataSet('population', 'births');

}

After all the datasets are instanced, I can run a simulation, which fills up

projected and combined datasets accordingly. The object also guarantees

no two DataSets or Charts are created with the same attributes. Once we

have instanced a DataSet with a name, it cannot be instanced again from

this Object.

public function AddDataSet($table='', $column='') {

 $NewDataSet=New DataSet($table, $column);

 if(!isset($this->DataSets[$column])) $this->DataSets[$column]=$NewDataSet;

 return $this->DataSets[$column];

}

public function GetDataSet($datasetname) {

 return $this->DataSets[$datasetname];

}

public function AddChart($chartname, $drawasparameter=0) {

 $NewChart=New Chart($chartname, $drawasparameter);

 if(!isset($this->Charts[$NewChart->container])) $this->Charts[$NewChart-

>container]=$NewChart;

 return $NewChart->container;

}

public function GetChart($chartname) {

 return $this->Charts[$chartname];

}

In case of Charts, we return the container name, this is important because

that is the unique identifier for them, and the identifier on the webpage.

With this I was ready with the main objects needed to handle any kind of

datasets in one common way.

5.5. Other Objects created

I needed a few extra objects like GUI or User. GUI is handling the graphical

interface, and most of the ajax calls. The latter handles user logins,

registrations. These are not really objects since all the used functions could

be outside of object context. Yet, I created a .class file for them for easier

human readability. Also the class diagram includes them, which makes it

easier to understand.

34

I also created a DB, Mailing, Validate, and Config classes, which are

basically just collections of functions. Yet DB is a singleton and since it is a

resource type, it is instanced as a global variable, but it is still not more

than a bunch of DB handling functions.

5.6. Speeding up things

At this point I was able to speed up two things. First, the Charts were

accessing the PHP engine every time they were resized. Redrawing is

essential on resize, but getting new dataset is not. Therefore, I modified the

JavaScript to remember the JSON data it has received earlier and return it

from the getJSONData() JavaScript function. The data size for a chart is

around 1-2 Kbytes, but the http connection can lag, causing sensible time

delay.

Second, I realized every time, when I instantiate my SimulationModel, I not

just rebuild the model, but I access the database itself as well. This could

have been a huge mistake and probably would have surfaced anyway

sooner, rather than later. The solution was to put all the Model related data

into a function, private function BuildUpModel() (see Appendix), which

creates all the data sets, charts, etc., and call this function only if the

unserialize() did not build up the data. Therefore, modifying the constructor

was enough. My debug.php assured me the MySQL queries run only once,

at first run, and neither the ajax handler, nor the JSON data handler

accesses the database.

private function __construct(){

 if(isset($_SESSION["obj"]["simulationmodel"]))

 self::unserialize2($_SESSION["obj"]["simulationmodel"]);

 elseif(count(array_keys($this->DataSets))<2) self::BuildUpModel();

}

Both ‘problems’ rooted in the web environment, where we cannot maintain

program states properly between sessions; hence we rebuild the objects

every time. Both solutions helped speeding up chart refreshment.

35

5.6.1. KISS – Keep it simple stupid

The well-known [9] principle helped me a lot of times. Not just when I

decided to handle everything with three classes, but also when I treated

everything as a data series, even parameters.

Continuing on this path, I decided to free up some memory usage for future

times. Therefore, I changed ‘combined’ data series to a reference type,

what is pointing to either the appropriate actual data or to the projected

one.

Furthermore the GetXxxxData() functions return reference types [10],

which are received by Chart’s AddSeries(), so every time the simulation

changes the data, no update is needed for the Chart objects as they access

the data through references. Of course the chart on the web still needs to

be updated. PHP uses a ‘Copy-on-Write’ method, meaning it copies data

into the new variable, to which it was assigned, only when it is changed

(written into), till then, the new variable is only a reference type. More

about PHP’s variable handling can be found in [11] and [12].

PHP can treat strings as numbers and vice-versa, but since I only use

numbers (at least in DataSets) I converted everything to number. This is a

one-time measure, done after reading the database. Also, by setting

floating number precision to 6, instead of 50, keeps memory usage low.

With these solutions, I approximately halved the amount of data stored in

the serialized SimulationModel object.

36

5.6.2. Techniques to accelerate processing

As I progressed further, I saw charts are updating slowly. There were about

7-8 charts opened at the time and it took 7-8 separate HTTP requests. I

decided to request all opened charts’ JSON data at once. With a slight

adjustment in the JSON handler and in the Chart Object’s PrintJSONData()

function, it was easily solvable. Only a short loop was needed in

SimulationModel to rush through the instanced Charts. It is worth noting, if

the user removes a Chart from the GUI, the SimulationModel Object

destroys it as well. Also, the amount of data for one chart varies between 2-

8 Kbytes. As a result, building up the HTTP connection still took more time,

than the data transfer. Since the parameter charts also receive JSON data

format, I included them as well in the response.

5.6.3. Assignments

I separated the DataSet names from the DataSeries names, resulting the

latter can be assigned to the Charts (even before they are created). As

mentioned earlier DataSeries are just references to the appropriate data.

Passing their references later to the Charts is possible, without moving

substantial amount of data or having the data ready at all, before creating

the chart. I can assign empty data series references to the charts, and

change the data in the referenced variable later.

In case of parameter charts, I had to assign the DataSet, not the series, to

the chart. That is because parameter charts must be able to modify

datasets, so the Chart has to know, which DataSet it is modifying.

These assignments were moved to MySQL later, so the code became clearer

also it became easier to add new charts. At the same time, a MySQL view

has been created to access all the needed data at BuildUp phase easier.

37

6. Drawing charts

In this chapter I will show how to draw charts and handle all the data

described in the previous chapter by these charts. First, I will introduce the

method to create charts, both the regular ones and the modifiable ones.

Later, I will explain what kind of software development was needed to serve

users’ needs.

6.1. Creating Charts

I used Google Chart Tools as my chart representation engine. This is a

JavaScript based software package designed for drawing different types of

charts, mostly the ones we are used to, like simple line and column charts.

6.1.1. The first Chart

The drawing itself is a simple JavaScript function, which gets the data as a

parameter, what can also be the return value of another JavaScript

function. The latter can be a JQuery function calling a server side script,

PHP in my case, which returns the data in the proper format. For Google

Chart Tools this format is called JSON [13]. All I had to do was to generate

a JSON formatted text out of the MySQL results. Later, these MySQL results

were placed into the DataSet Objects.

My first chart looked like the one below. Its corresponding HTML,

JavaScript, and PHP codes can be found in the Appendix with a partial JSON

data set.

38

Figure 17 - My first Chart drawn with Google Chart Tools

The Chart Object’s ‘PrintJSONData()’ generates the proper JSON format

from all the data series attached to the specific chart and returns the

output. Right before the chart wrapper (re)draws the chart. In the Appendix

you can find the PHP code which is inside the Chart Class objects and uses

its data series. That data series is generated by creating a new Chart and

adding the data series into it.

Note: There is a json_response() function in PHP but for Google charts I

needed a more complex one, in which I can handle column names, notes,

etc. For example, looking at my first stacked column chart closer, I figured

out it adds values as strings, so “3”+”4” becomes “34” instead of 7. This

has required a slight adjustment, using is_numeric(). Source code can be

found in the Appendix.

With implementing all the above, I was able to draw a Chart with simply

calling the Chart Objects Draw() and PrintJSONData() functions. The first

one initiates the chart, the second fills it with data. Of course both functions

are called from JavaScript functions and their outputs are received by the

callers, to be able to draw up the chart in the user’s browser.

39

6.1.2. Multiple charts, AJAX refreshment

After accomplishing drawing my first chart, I needed to be able to draw

many of them and being able to refresh their inner data without page

loading. Both were solved simply. All I had to do was to create a list of

charts in the JavaScript, which are already shown. Then, every time I

created new data for these charts, I just called the updatecharts()

JavaScript function, which goes through all the visible charts and redraws

them. This was easy but essential to be able to set parameters on the air.

6.1.3. Setting parameters for the Charts on the air

This has been the most important part regarding charts, without question. I

was already able to draw and update multiple charts but I was not able to

set parameters easily. The main problem was with the parameters

themselves, to know which can be set or vary by time. Speaking of births

for e.g., Total Fertility Rate varies by time. It is inadequate to ask for one

parameter only when I want to make a 15-20 year long forecast. The goal

was to make it easy to set different values for every period during the

entire forecast time. In case of fertility rate, user has to be able to provide a

number as parameter for each year, separately, for the next 15-20 years.

My dream was to make the charts interactive, meaning the user can move

the data points on the charts and set the values manually and easily. To

achieve this goal I had to create a bar chart manually. For this, I used

JQuery UI’s slider function [14], which is a simple slider being able to set a

value in a range. Multiplying this slider it creates a bar chart in which the

user is capable of moving each and every column separately. By default the

values are the forecasted values of the appropriate data series. This is on

purpose to show the user if somebody had known the values back in time,

then what would have been the simulation result. Also, a parameter can

depend on its earlier values, like tax rates do, so if we change a tax rate in

2013, we can assume it will be the new value in 2014 as well. Therefore,

the values of these columns have to be the forecasted values, until the user

changes them.

40

The parameters, like ‘Total Fertility Rate’ in the example below, are the

same kind of data sets just as births or total population. It is just a decision,

whether I use them as a changeable parameter or just a forecasted data

set, which might be used in other data set’s forecast functions of course.

The screenshot shows a manual change of fertility rate and its effect on the

births chart. The refreshment of the births chart happens in real time,

almost immediately. Additionally, any other charts refresh, such as total

population, which uses a more complex method calculating the data. Since

the number of births is certainly among the needed data for forecasting

population, hence changing TFR affects Total Population. As a result, when I

reduce the number of births for the year 2021, then the forecasted

population line becomes steeper, as smaller population will be expected.

Figure 18 – A parameter change and its effect

From this moment I was able to set any data series as parameters. So I can

use ’totalferilitityrate[$year-$month]’ as a parameter in any forecast

function. Note: this became the following later, as Objects had been

created.

&$SimulationModel->GetDataSet("total_fertility_rate")->GetCombinedData();

41

6.2. Improving charts’ user interface

Even though I will introduce the GUI in chapter 0, I would like to describe

the necessary developments made with Google Chart Tools in this chapter.

These were programming tasks, in order to make the GUI work as it is

working. First, I will show how I applied certain Google Charts functions

onto my charts. Later, I will demonstrate how moving averages and year-

on-year comparison were made available on these charts.

6.2.1. Chart Range Filter

Chart Range Filter is a built-in function of Google Charts, which allows the

user to change the visible time range of the charts, and show a smaller or

wider time period. The only condition is that the horizontal axis has to be a

continuous (time or number) scale. However, this condition engendered a

lot of other problems, for example, a monthly chart, especially a column

chart, is not divided into equal spaces in case of a continuous axis, rather,

the spaces follow the lengths of the months. This means, if I draw 3

columns on a chart, Feb-Mar-Apr, then the column of March will not be in

the middle, but a bit closer to February, as the second month of the year is

only 28 days, while April is 30.

To solve this problem horizontal axis had to be string type, so the spaces

will be equal. However, it contradicts with the original condition, that the

axis must be continuous. Luckily, the values written on the chart can be

converted into string and still used as date type.

With this solution I was able to apply the Chart Range Filter on every chart,

making it possible for the user, to narrow the time period of the charts

accordingly.

42

6.2.2. Show/hide columns

While Chart Range Filter has a built-in graphical interface in Google Charts,

showing/hiding columns has not. Moreover, when I hide a column, the

colors of the remaining data series change on the chart. So my task was not

just to create an interface, but to handle coloring as well.

For example, I have a stacked chart on ‘taxes on consumption’ (VAT, excise

tax, etc) and I want to hide VAT, which is the first data series. After

removing that, excise tax becomes the first series, and the first available

color is assigned to it. This is very confusing, when we show/hide columns

and colors change all the time. Just imagine a line chart, where we hide the

blue line, and suddenly all other lines, which do not move at all, change

their colors, and one of them will be the blue one.

As a solution, I had to create both a list for colors, and a list for the

columns. Whenever I hide a column, I re-assign the original colors to the

remaining (visible) columns according to their original position.

Furthermore, I had to forbid hiding all columns, at least one must be visible

all the time, otherwise Google Charts throws an error.

6.2.3. Group by months

Many analysts like charts where they can compare years to each other. In

order to make this available, I had to group each data series by months and

redraw the chart where every year is a separate data series (from the

chart’s point of view).

The big question was where should I create this new data; in the Chart

object or inside the DataSet object? I chose the former, as I think this

service is part of the Charts, and it has nothing to do with the original data.

For example VAT income data does not change at all, just because I group

them by months, this is only a visibility service, hence it is enough to

change the already introduced PrintJSONData() function, and return the

very same values in a different order.

43

As easy as it sounds, it took about a whole day to alter the function

accordingly, and to create the necessary new functions. Additionally, the

colors of the data series changed again, as a simple VAT data suddenly

became 7 different data series, one for each year from 2007 till 2013. This

was not a problem at first, but I also made both column and line charts

available for this type of grouping, causing a little confusion. When I change

between column/line charts, while grouped by months, I should keep

hidden columns hidden. But when I change back to the original view, then I

have to show all columns again. Moreover, this service can easily produce

10-20 or more data series on one chart, which results errors in Google

Charts. Therefore, the service of grouping had to be limited for those charts

only which were monthly, hence containing data from 2007, and which are

not stacked.

6.2.4. Moving averages

Many analysts also like moving averages. Just like in case of the monthly

groups, I considered moving averages as a different type of data

representations, which has nothing to do with the original data itself. This

resulted I built this function into PrintJSONData() as well. This one also took

about an entire day, as many new problems have arisen again.

First, the first few data rows had to be excluded from the chart, as I cannot

calculate a 12 months average for e.g. for November 2007, since I have no

actual data from 2006, to make that calculation. However, if I exclude

(hide) a data series, then colorings change again, so I decided not to hide

them, just to empty them. This results, the chart shows the data series for

2007, but the values are empty records. I had to keep the series for 2007,

so I did not have to administer which was the earlier state for the column of

2007, hidden or shown. So the user can switch back to raw data, or 3

months averages, while keep the already set visibility for the 2007 series.

The second problem was, this service had to work with both the original

view and the monthly grouped charts, but it had to also work with stacked

charts, for what the monthly grouping was not available. Luckily this proved

to be the smaller problem.

44

6.2.5. An example of the charts’ interface

To demonstrate the capabilities I place a few screenshots below to show the

how a chart can be altered by the functions described above.

Figure 19 - Grouping by months, selecting the last 3 years and 12 months moving averages

45

7. Forecasts

Three goals had to be met by the forecast functions. First, they should be

easily modified in order to make quick changes in these functions. Second, I

have to be able to make ‘what-if’ type simulations. Whenever the

government plans a new law, or multiple scenarios have to be compared,

these functions have to be accessible simultaneously. Leading to the

conclusion, one data set must have multiple forecast functions. Third, the

functions must store what data sets they use, so a usage graph can be built

up, to see the loops and causality of these functions.

7.1. Handling forecast functions

Each dataset can have multiple forecast functions, thus making one of them

the default one. Also, each function must have a separate list of data sets,

the ones it uses. While this has no functional need, the advantage is, I can

build up the global model, without understanding it thoroughly. Finally, each

function should contain a list of references, where the specific functions are

described. Typically these are news articles, law drafts, etc., resulting every

‘what-if’ simulation will have its own description.

7.1.1. Storing forecast functions

Any user, if he has the rights, can open a modal window with the

corresponding functions of the particular dataset. Here, we can define which

one is the active function, and we can add/modify/remove functions and

their references.

46

Figure 20 - Forecast functions for gambling tax

Figure 21 - Modifying the '2500' named forecast function of gambling tax.

As you can see, the forecast function is similar to the one shown earlier but

this time, it is in the database. The list of the datasets, which are used by

this particular function, can be set also in this window. With this solution all

of my goals were solved at once. Generally, anyone could create his own

forecast function and set it active, making any kind of simulation not just

possible, but storable for later use.

The used program code editor is called Ace Code Editor [15], which had to

be applied to the modal window.

47

7.1.2. Applying forecast functions to the simulation

In order to avoid frequent database accesses, each data set stores its own

and active forecast function within itself. It is created during initialization,

and can be called anytime, for example when changing the active function.

After changing the active forecast function, all I have to do, is to run the

simulation again, and the newly activated forecast function will be used.

//inside DataSet

function SetForecastFunction() {

 global $db;

 $res=$db->rq("select forecastfunction from forecasts where isdefault=1 and

datasetid in (select id from datasets where datasetuniquename='".$this->name."')");

 if($db->num_rows($res)) {

 $r=$db->fetch($res);

 $this->forecastfunction=$r["forecastfunction"];

 } else {

 $this->forecastfunction="return 0;";

 }

}

function GetForecastFunction() {

 return $this->forecastfunction;

}

//inside Simulation

case "budget_inc_gambling_tax":

 return eval($this->GetDataSet($datasetname)->GetForecastFunction());

Note, this solution is a huge security risk, as it allows users, to insert code

into the program, and run it. Since I do not plan to allow any users to

access this feature, it does not seem to be a risk at all. At least, it is not any

bigger then my own mistakes. Moreover, it is possible to create a new,

pseudo language in order to allow any user to write their functions. Then,

both security issues and publicly available functions were solved. However,

creating a new programming language is certainly outside the scope of this

thesis.

The whole idea behind was, to make the forecast variants available to

everyone, and be able to create new ones on demand. So anyone can see

the different outcomes, without having access to the source code.

48

7.2. Defining forecast functions

When I finally had all the data set in my database and I could draw them as

charts, including projected data, I could start making projections for each

and every one of them.

My goal, as I stated it earlier, was to make a decent budget projection

therefore I decided to make an individual projection for every item found in

the balance sheet of the budget. Some of them were quite easy, some were

not. For example the Central Nuclear Fund receives a big amount of money

each January then a small, almost fixed, amount every other month. The

same applies to NGOs with the distinction they receive bigger money every

quarter. Forecasting these is easy. But making a VAT income projection is

rather hard, very noisy and seasonal. Even worse, it is the single biggest

item in the budget, hence quite important to make a good projection for it

7.2.1. The easy forecasts

Some data series, like the Central Nuclear Fund, or the National Bank’s gold

reserves are very easy to forecast. Typically these data never change, or

they follow a distinct pattern. Moreover, these data are usually only a small

part of the entire budget, therefore making a 1-2 billion forint mistake, on a

12 months period, does not really affect the entire budget number, what is

well above 10 thousand billion/year. Of course, I can always adjust the

forecast to the official budget in these cases, making it more accurate, as

the Ministry usually does not miss these types of data. The forecast function

for the Central Nuclear Fund is basically multiplying the 12 months earlier

amount with inflation. To be more precise, it is 1.611 billion/month except

January, when it is inflation*previous January.

49

Figure 22 – Corporate taxes - revenues

Data series considered to be easy to forecast include:

 Corporate taxes

 Tax on company cars

 Simplified business tax

 Surtax on energy suppliers

 Itemized tax on minor taxpayers

 Registration tax

 Financial transaction tax

 Surtax of private individuals

 Registration fee on domestic aid

 Private individuals service relations

 Tax payments of households

 Gold, SDR, and IMF reserves

 Population and births

 Economically active 15-74 years old population

These are typically either a constant, like households’ tax payments , or at

very low levels, like the gold reserves, or following a distinct pattern, like

corporate taxes. All this results, their forecast functions can be created in

seconds basically.

50

7.2.2. Not that easy forecasts

Looking at the expenditure side of the Central Nuclear Fund, it is all but

easy to forecast. The good news is, it is still a small amount, the bad news

is, it shows a rather random pattern. Luckily, since this is a budgetary

institution, it has a publicly available budget at the atomic energy

authority’s website [16]. Here we can find both the last year’s budget, what

is useful to compare it to the actual data, and this year’s. Since last year’s

budget matches the actual data, I can assume this year it will match too,

spending 6.489 billion HUF. Moreover, I also assume the increment will be

somewhat similar to next year as well. To put it simple, I basically divided

the planned expenditures with 11, as the pattern clearly shows no

expenditures in December, and that became my forecast function.

Administering these forecasts in the database

Here, I could finally use the storage method for forecast functions. First I

stored a forecast function. Then, I have added the data source, namely the

website address of the nuclear fund’s budget, to the forecast function’s

references. Finally, I applied this information to the chart’s ‘more info’

section. Figures follow respectively.

Figure 23 - Forecast function for the Central Nuclear Fund’s expenditures.

51

Figure 24 - Defining the references for the nuclear fund's forecast function.

Figure 25 - The chart and its information on nuclear fund expenditures.

7.2.3. Hard to forecast data series

Reverse engineering inflation basket

The statistical office provides inflation data for 12 groups, such as food,

housing or education. But the average of them is weighted differently, so

the inflation at the end will be a number which is not the simple average of

the 12 groups.

The solution was quite simple, I looked up a matrix solver on the internet,

[17], copy pasted 12 columns of the inflation record into it and copied

another 12 result data, and it gave mi back the basket.

52

2013. Mar
(1) Basket weights (1) (1)*(2)

Food and non-alcoholic beverages 103.3 0.2117 21.86861

Alcoholic beverages, tobacco 113.5 0.0946 10.7371

Clothing and footwear 99.5 0.0479 4.76605

Housing, water, electricity, gas and other fuels 95.9 0.1578 15.13302
Furnishings, household equipment and routine
maintenance 101.2 0.1709 17.29508

Health 103.0 0.0605 6.2315

Transport 100.5 0.1298 13.0449

Communication 103.2 0.0696 7.18272

Recreation and culture 101.0 0.084 8.484

Education 104.1 -0.0154 -1.60314

Restaurants and hotels 103.3 -0.2223 -22.96359

Miscellaneous goods and services 106.5 0.207 22.0455

 Off. Data Calculated:

Inflation Total 102.2

102.22175

From this point I can make separate projections for each group and also a

projection for the overall inflation.

Forecasting Debt

Hungary’s public debt is calculated as the ratio of the consolidated debt of

general government / current GDP.

The first data comes from the NBH (National Bank of Hungary) which is

calculated not that simply. The non-consolidated data is the sum of central

government + local governments + social security funds’ debt. It is quite

simple to calculate and check from the data available at [18]. But the

consolidated data excludes those debts where the local governments owe

the central government, etc. Also treasury bills are evaluated as the

payback value, while the Government Debt Management Agency [19]

evaluates them at the face value. The difference is the yearly interest paid

on these, roughly 5% on the 2000bln HUF T-bills.

After many discussions with the NBH over the phone, it turned out also

some of the government owned companies are included, for example public

transportation. Also Gripen-leasing is considered as a debt, even though it

is a leasing.

53

All in all, since I do not have all this data available chose a simpler solution.

The SSF and local governments’ debt is quite simple, and consolidated

values are really close to the not-consolidated ones. So the task is to

forecast central government’s debt. I chose to do this from GDMA’s data,

since the difference between the consolidated debt and the debt published

by GDMA varies around 550 billion forints +- 80 billion (0.3% of the GDP)

Meaning if I simply add this amount to the GDMA debt I can forecast central

government’s debt pretty close. Adding SSF and local governments’ debt to

it will give me a pretty good estimate. Worth to note the revisions usually

alter the data with bigger difference. Still, if I can find reliable data how this

roughly 550 billion (or less because of T-bills interest) builds up, I will

change it.

All in all forecasting the debt is calculated from the GDMA published debt

(which generally grows with the deficit in a year) local governments’ and

SSF debt. The first two is also affected by FX ratios, luckily foreign currency

loans are known within these data. The first one is also affected by interest

rates, especially on the long therm.

On the other hand I have to make a GDP forecast, for the current price as

well. The 4 quarter moving sum at SO’s (Statistical Office) web page [20] is

used as the GDP when debt is divided. To prove this I checked the official

NBH debt data and I calculated the debt for each quarter with the 4Qs GDP

and got the table below. It is clearly visible the NBH calculates the

Maastricht debt [21] this way.

quarter current

GDP

NBH cons.

debt

4Q moving

sum of GDP

ratio official

value

2011Q2 6828192 21,306.7 27157659 78.46% 78.5

2011Q3 7125577 22,955.8 27508950 83.45% 83.4

2011Q4 7751079 22,690.7 27886401 81.37% 81.4

2012Q1 6350176 22,397.5 28055024 79.83% 79.8

2012Q2 6973411 22,171.5 28200243 78.62% 78.6

2012Q3 7234861 22,205.0 28309527 78.44% 78.4

2012Q4 7717553 22,380.9 28276001 79.15% 79.2

54

Of course GDP forecast is not this simple. Anyway, to be able to make a

forecast for the debt, I had to reload the Financial Assets of the government

and the households as well, using the non-consolidated data (because

values can be added unlikely in the consolidated case). Also I had to load in

the GDMA debt data as well.

Fun fact, I found an error in the NBH’s debt data, a sum was miscalculated.

They were also surprised when I called their attention, but it did not make

any harm at all at the end.

7.3. One solution above all, SPSS

All the work so far was done for the sole purpose to be able to build up my

entire macroeconomic model automatically, without any particular

knowledge in economics, and to be able to update the entire model in

minutes, if needed. So I can refresh my model every month, for e.g.

As you can see, there were many types of data to forecast in many ways.

However, my ultimate goal was to create all forecast functions atomically. I

wanted to make IBM’s SPSS to find all the regression functions among

these data, and create a comprehensive model for the entire Hungarian

macro economy. To do this, many steps had to be done.

55

Figure 26 - Activity Diagram for creating the forecast functions

First, I had to figure out what kind of regression functions I am willing to

use, and how can I include other types of functions as well. Then, I had to

create a database which the SPSS can use. I also had to solve to process

the results automatically and put them into my database as forecast

functions. Finally, I had to build up a directed acyclic graph to determine in

what particular order I must evaluate my forecast functions. In this chapter

I will walk through all these steps.

56

7.3.1. Regression functions

SPSS can handle many types of regression functions; however it cannot

handle those, which I wanted to use. These are the ones, where columns

are multiplied with each other, like multiplying last year’s same month’s

VAT income with the actual 12 months price index, and use that value as a

regression variable. Even if SPSS were capable of doing this, the number of

variables would jump from the hundreds to the ten thousands.

Without a question the fastest and simplest regression function is linear

regression, with ‘stepwise’ algorithm. However, I cannot be sure that all my

forecast functions will be linear; neither does this algorithm provide a

solution to multiply variables with each other.

To solve my problems at once, the trivial solution was to create a database

into which these new variables, both non-linear and ‘cross-multiplied’ are

generated. This means, I not just put all my datasets into one single

database, but I also generated their inflation-multiplied values into the

database. Furthermore, I put the preceding 12 months’ value into the same

row, along with the values, which were multiplied by the ratio of working

days at 12 months ago and now.

To summarize, let’s take a look at VAT income’s line for Jul 2013. The

database contained:

 the raw value for this month: 211,950

 the raw value of last year, Jul 2012: 209,089

 inflation*last year’s value: 1.009 * 209,089 = 210,970

 lasts year’s square value : 209,089^2

 last year’s multiplied by working days ratio: 209,089*23/22

And many other values could be generated, including GDP index

multiplication, tax rate differences, and so on. With this solution, a simple

linear regression function can investigate non-linear relations, as the values’

squares are included; also some multiplication among variables is possible.

57

The limits are high, as SPSS can handle up to 2 billion columns in every

database, whereas Excel for e.g. can handle only 255. Theoretically, I could

multiply all my datasets with up to two other in every combination,

resulting about 20 million variants. Then I could create another hundred

columns for each of them with the method above, including last year’s same

month’s data, or their squares, and so on. For now, I chose to create this

few thousand variables ‘only’.

7.3.2. Creating SPSS database

SPSS seemed to be the best choice, as many other programs or functions,

are not that fast or unable to handle millions of variables. Furthermore

SPSS has a script language and XML output, making it the perfect

candidate.

To create a database for SPSS all I had to do was to simply export all my

datasets into one .csv file, where the rows contain the values for the same

month (or quarter). This was rather easy with a small PHP script, which has

saved a few hundred Kbytes sized .csv file.

Then importing this .csv into SPSS was simple.

7.3.3. Running regression functions automatically

SPSS is able to run any of its functions in a syntax and/or script window. A

simple regression function on corporate tax incomes, for all the columns,

and saving it into XML file looked like this:

DATASET ACTIVATE DataSet3.

REGRESSION

 /VARIABLES=ALL

 /MISSING LISTWISE

 /STATISTICS COEFF

 /CRITERIA=PIN(.05) POUT(.10)

 /ORIGIN

 /DEPENDENT budget_inc_corporate_taxes

 /METHOD=STEPWISE

 /OUTFILE=MODEL('D:\works\macrosim\spss\budget_inc_corporate_taxes.xml').

58

As it has turned out, using ‘/variables all’ option was a bad choice, as it

starts using the variables from the first row for each dependent variable.

This means, even though I have last year’s same month’s data right after

each column, SPSS tries the first column first as part of the solution,

instead of the most likely one.

To solve this problem, I had to drop ‘/variables all’ option and name each

column in order, which I want the algorithm to use. It gave me a lot better

results. I also had to drop using constants in the solutions, because without

them solutions were also closer. After all this, the syntax saved an XML file

containing the regression function I needed.

<ParamMatrix >

 <PCell parameterName="ds142_12m" beta="0.771271290332966" />

 <PCell parameterName="ds154_12m" beta="2.39343217872263" />

 <PCell parameterName="ds155_12m" beta="-0.252012588743006" />

 <PCell parameterName="ds212_12m" beta="1.19953885365845" />

</ParamMatrix>

As you can see, all I had to do was to parse the XML file with php, for which

I used simplexml_load_string() function, and with a little extra code, it has

generated me the following forecast function, which I could place into the

database. This code contains the human readable variable names also.

$DSCom=&$this->GetDataSet('budget_inc_corporate_taxes')->GetCombinedData();

$DSThisMonth= (isset($DSCom[$month])) ? $DSThisMonth=$DSCom[$month] : 0;

$Constant=0;

$i=-1;

$DS[++$i]=&$this->GetDataSet('budget_inc_corporate_taxes')->GetCombinedData();

$diff[$i]=-12;

$Beta[$i]=0.771271290332966;

$DS[++$i]=&$this->GetDataSet('budget_inc_surtax_on_energy_suppliers')-

>GetCombinedData();

$diff[$i]=-12;

$Beta[$i]=2.39343217872263;

$DS[++$i]=&$this->GetDataSet('budget_inc_surtax_on_specific_sectors')-

>GetCombinedData();

$diff[$i]=-12;

$Beta[$i]=-0.252012588743006;

$DS[++$i]=&$this->GetDataSet('hsf_inc_health_contribution')-

>GetCombinedData();

$diff[$i]=-12;

$Beta[$i]=1.19953885365845;

$ret=$Constant;

for($j=0; isset($DS[$j]); $j++) {

 $month2=DataSet::AddYearMonthToKey($month, 0, $diff[$j]);

 $ret+= (isset($DS[$j][$month2])) ? $DS[$j][$month2]*$Beta[$j] : 0;

}

return ($this->GetDataSet($datasetname)->isAllowedToSimulate($month)) ? $ret

: $DSThisMonth;

59

I was ready with my forecast function generation for corporate taxes.

The original SPSS output was:

Coefficientsa,b

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig. B
Std.
Error Beta

4 ds142_12m .771 .038 .808 20.312 .000

ds154_12m 2.393 .356 .254 6.722 .000

ds155_12m -.252 .054 -.143 -4.656 .000

ds212_12m 1.200 .299 .122 4.014 .000

a. Dependent Variable: ds142_raw

b. Linear Regression through the Origin

All I had to do was to write a script, which generates all the regression

syntaxes for SPSS for all needed variables and saves them into different

xml files. This script can be found in the Appendix.

Finally, applying this function to the chart, resulted the following:

Figure 27 - SPSS's forecast function for budget income on corporate taxes

7.3.4. Building up the graph, and dropping it

Since I had the used dataset names in the xml files, I could easily inserted

the dataset ids into the forecasts’ forecastsdsusage MySQL table, shown in

3.3.3. Once I had all functions’ dataset usage stored it took no time to

figure out which datasets must be calculated first.

60

This had to be done, because if a variable uses data from the same month,

then every other datasets, which are used, must be calculated first. To be

able to do this a DAG (directed acyclic graph) had to be built.

As I found loops I figured out, some forecast functions must be written

without using other datasets. Luckily many forecasts could be written this

way, as already introduced in ‘7.2.1 The easy forecasts’.

Yet this was not enough, as SPSS built up a system, which had many loops,

meaning it has contained a lot of regression functions with same month’s

data. After many tries, I could reduce the number of variables to 60, out of

300, which couldn’t be forecasted. At this time, the number of levels in my

DAG was around 10. The bad news was, stepwise algorithm’s PIN/POUT

parameters had to be reduces, to achieve this goal, resulting it has dropped

a lot of columns.

As a solution I have decided to drop the idea of using columns from the

same month, then I do not have to build a DAG at all. I generated the

previous month’s data into the SPSS input file, and it was enough.

After all this, I had to apply additional modifying functions to various

dataset, like tax rates, or the inflation basket, which were also explained

earlier. In some cases, like nuclear fund expenditures, I used manual

forecast functions, even though the SPSS offered me another.

As a result I had generated about 300 forecast functions, all in a coherent

and interconnected system, which models the entire Hungarian macro-

economy without knowing exactly what the true relations among variables

are.

61

8. GUI

Finally I would like to briefly introduce the GUI. Even though it took a lot of

time to implement I cannot really show how comfortable it became. Still, I

will try to describe what I did and why I did, what the objectives were, and

what problems I came through.

I wanted to make as many parameters as possible visible simultaneously,

meanwhile, I also wanted to show the result charts at the same time. The

objective was whenever the user changes a parameter its effects show up

immediately on the charts as well. Of course, the entire simulation has to

be run every time a single bar or an active forecast function is changed.

After many variations I decided to put the parameters to the left side.

Above it is the “Add Chart” button, which includes all the macro topics, what

I have collected: from budget data through employment and prices till

various National Bank data. These topics generally follow the way, how

Statistical Office and the National Bank present data to us.

Basically the user chooses a topic, like budget, selects the charts which

he/she wants to use as parameter or see on the right side, like base rate

what can be put onto both sides, and puts them onto the screen. Also if the

user has administrative rights he/she can administrate the charts’ and data

sets’ data as well, on the very same screen. Putting all these together

resulted something like this:

62

Figure 28 - Screenshot of the GUI

8.1. Adding charts, using topics

After many variations on how to select charts and place them onto the

stage, I finally decided to rebuild most of the topics available at the

statistical office’s and national bank’s webpages in a form which is

hierarchically equivalent to the data found there. Meaning, I not just

present unemployment as a data, but I put it into context how it is

calculated, so the user can see the basic connections among these data.

By far, rebuilding the hierarchy of the budget was the biggest challenge, to

be able to present the data in the same form as the ministry does. To do

that, all the groups and subgroups had to be built up in the database as

derived data sets. This was useful not just because I could present the

charts in an easy to read format, but because the summary charts and

datasets were created at the same time. For example putting budget

revenues in a hierarchical structure resulted the budget revenues hierarchy

instantly contained all the approximately 80 items and their forecasts as

well, as the GUI broke down the derived datasets.

63

At the end, the roughly 500 charts created so far became easily accessible

and understandable to anyone who uses the program. Also the topics are

following already seen structures, so whoever has used HCSO’s or NBH’s

webpages before will know where to look for the data, they are interested

in.

8.2. Presets

To make the GUI more user friendly, I have created a few sets of charts and

parameter charts which can be opened by a simple click, so whenever

somebody is interested in rates, or employment data, or budget data,

he/she can easily access the most important 5-10 charts and parameters,

so he/she does not have to open them one by one. These presets are also

administrable via web, so I can add/remove charts into them at any time,

or create new sets.

8.3. Chart Editor

This is the most important GUI part, at least for me. Also, this proved to be

the hardest one as well. Google Chart Tools is not exactly designed to

handle my needs. I wanted to make the charts’ timeline selectable,

meaning the user can define on every chart, what time window he wants to

see. This would have been an easy one, unless I am using Column Charts.

More about the topic can be found in [22], where I personally discussed the

issue with the developer. The basic problem is GCT cuts first and last

columns into halves, since their center is positioned to the exact date. But

the view window obviously ends at the last date.

The solution was quite complicated, as described in the above forum, but I

made it finally. It was crucial to use it together with my other feature which

is adding/dropping data columns dynamically. So if someone wants to see

consumption taxes without VAT and Excise tax for example, he can throw

out these columns. It looks like this, before and after modification:

64

Figure 29 - Using chart editor, to set visible columns and time range

I also included the already introduced variant selector as well, where the

user can choose whether he wants to see the data grouped by month, or

viewing 3 or 12 months moving averages/sums, or year-to-date

comparisons for each year.

65

9. Summary

My goal was to create a framework and a method to model any kind of

complex system, not just macroeconomics. The way of storing, forecasting,

and modifying data gives the chance to model other systems as well, from

weather to a formula-1 car.

When I started my thesis I had my doubts it will work at all in a way it is

working now. However, I trusted my instincts that engineering in fact can

offer a new approaches and solutions to known problems. The system I

developed may not model the Hungarian macroeconomics as economist

would like to see, but it may help us understand the connections among

variables we have never seen before. Also it gives us the opportunity to

build up models on a scale which is definitely bigger than single individuals

can make.

During the development a lot of feature ideas arose, which I hope will be

implemented once into this system. These features include from applying

linear programming to optimize for GDP growth with constraints on inflation

or debt for e.g., through creating a new programming language, till

modeling alternative scenarios, such as what would have happened if

private pensions had not been nationalized. These features were not part of

my task this time but I hope I will have the chance to continue this work

and implement these ideas.

Fulfilling my goals feels as a great closure of my studies at the Budapest

University of Technology and Economics. I am glad that I had the chance to

conclude this work at the Business IT MSc program, what aligns with my

interests perfectly. I hope these years prepared me to succeed both at

another school and in business life.

Finally, I would like to thank for many individuals for the help and support

they provided not just during my thesis work but all these years. Besides

my family and friends, I am especially thankful to my supervisor, Dr. Bela

Szikora, for his extraordinary patience and trust he has given me.

66

References

[1] "Google Chart Tools," [Online]. Available:

https://developers.google.com/chart/.

[2] Google, "google-visualization-api-issues," Google, [Online]. Available:

https://code.google.com/p/google-visualization-api-

issues/issues/list?can=2&q=&sort=-

id&colspec=ID%20Type%20Status%20Priority%20Milestone%20Owner%20S

ummary%20Stars.

[3] "Polynomial Regression," [Online]. Available:

http://www.drque.net/Projects/PolynomialRegression/.

[4] "Trasury," [Online]. Available: www.allamkincstar.gov.

[5] "Wget - Manual," [Online]. Available:

http://www.gnu.org/software/wget/manual/wget.html.

[6] "session_register," [Online]. Available:

http://php.net/manual/en/function.session-register.php.

[7] "Storing singleton objects in PHP sessions," [Online]. Available:

http://www.robert-gonzalez.com/2012/03/14/storing-singleton-objects-in-

php-sessions/.

[8] B. Csébfalvi, "Geometrical Modeling," [Online]. Available:

http://sirkan.iit.bme.hu/~cseb/Education/ComputerGraphics/BW/modeling_6.

pdf.

[9] "KISS Principle," [Online]. Available:

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/KISS_principle.htm

l.

[10] "Reference Type," [Online]. Available:

http://php.net/manual/en/language.references.pass.php.

[11] "Copy-on-Write," [Online]. Available:

http://www.research.ibm.com/trl/people/mich/pub/200901_popl2009phpsem.

pdf.

[12] "schlueters.de," [Online]. Available: http://schlueters.de/blog/archives/125-

Do-not-use-PHP-references.html.

[13] "Introducing JSON," [Online]. Available: http://www.json.org/.

[14] "JQuery UI," [Online]. Available: http://jqueryui.com/slider/.

[15] "Ace Code Editor," [Online]. Available: http://ace.c9.io/.

[16] "Hungarian Atomic Energy Authorithy," [Online]. Available:

http://www.haea.gov.hu/.

[17] "Linear Equations Solver," [Online]. Available: http://www.bluebit.gr/matrix-

calculator/linear_equations.aspx.

67

[18] "TIME-SERIES OF DETAILED FINANCIAL ACCOUNTS BY SECTORS," [Online].

Available: http://english.mnb.hu/Statisztika/data-and-

information/mnben_statisztikai_idosorok/mnben_elv_net_lending/mnben_060

2_nemz_modsz_idosorok090107.

[19] [Online]. Available: www.akk.hu.

[20] "Statistical office," [Online]. Available: http://www.ksh.hu/.

[21] "OECD iLibrary," [Online]. Available: http://www.oecd-

ilibrary.org/content/data/data-00021-en. [Accessed 03 05 2013].

[22] "Bug: ColumnChart columns halved if hAxis is date," [Online]. Available:

https://code.google.com/p/google-visualization-api-

issues/issues/detail?id=1212.

68

List of figures

Figure 1 - The database model of the program ... 7
Figure 2 - Database model of DataSets ... 9
Figure 3 - Database model for Charts ... 10
Figure 4 - Database model for forecast functions ... 11
Figure 5 - Budget balance report for 2013 Jan-Feb, incomes and expenditures 15
Figure 6 - Budget data 2007-2013 merged into 1 excel sheet ... 17
Figure 7 - Chart Groups Admin .. 20
Figure 8 - Defining a new Data Set from a SQL table column .. 20
Figure 9 - Creating a new chart and adding Data Set into it. ... 21
Figure 10 - Stacked column chart on consumption related taxes, actual data 22
Figure 11 - Creating derived Data Set with any kind of operation on the members 22
Figure 12 - One-time effects on Value Added Tax incomes .. 24
Figure 13 – Without (left) and with (right) one-time effects on VAT 24
Figure 14 - Class Diagram .. 26
Figure 15 - Component Diagram .. 27
Figure 16 - Derived data set as member of another derived data set 30
Figure 17 - My first Chart drawn with Google Chart Tools .. 38
Figure 18 – A parameter change and its effect .. 40
Figure 19 - Grouping by months, selecting the last 3 years and 12 months moving averages

 ... 44
Figure 20 - Forecast functions for gambling tax ... 46
Figure 21 - Modifying the '2500' named forecast function of gambling tax. 46
Figure 22 – Corporate taxes - revenues .. 49
Figure 23 - Forecast function for the Central Nuclear Fund’s expenditures......................... 50
Figure 24 - Defining the references for the nuclear fund's forecast function. 51
Figure 25 - The chart and its information on nuclear fund expenditures. 51
Figure 26 - Activity Diagram for creating the forecast functions 55
Figure 27 - SPSS's forecast function for budget income on corporate taxes 59
Figure 28 - Screenshot of the GUI ... 62
Figure 29 - Using chart editor, to set visible columns and time range 64

69

A. 1. Appendix – Source Codes

Drawing Chart, JavaScript and PHP codes

// HTML Code

<div id="births" class="chartdiv"></div>

// Javascript Code calling the chart drawer

AddAndDrawChart('LineChart', 'births', '{

"title":"Births",

"hAxis":{"title":"year"},

"vAxis":{"title":"number of births"}}');

var wrapper;

var charts=Array();

// Adding the chart to the list of active charts

function AddAndDrawChart(charttype, fullchartname, optionstext) {

 var i=charts.length;

 charts[i]=Array();

 charts[i][0]=charttype;

 charts[i][1]=fullchartname;

 charts[i][2]=optionstext;

 drawchart(i);

}

// Drawing the ’i’th Chart

function drawchart(i) {

 drawVisualization(charts[i][0], charts[i][1], charts[i][2]);

// this is the modified original Google Chart Drawing function

function drawVisualization(charttype, fullchartname, optionstext) {

 var optionstext;

 if(optionstext=='') optionstext='{ }';

 wrapper = new google.visualization.ChartWrapper({

 chartType: charttype,

 dataTable: getJSONData(fullchartname),

 options: jQuery.parseJSON(optionstext),

 containerId: fullchartname

 });

 wrapper.draw();

 }

// Loading the JSON data from the PHP

function getJSONData(fullchartname) {

 var jsonData = $.ajax({

 url: "includes/JSON-response.php?fullchartname="+fullchartname,

 dataType:"json",

 async: false

 }).responseText;

 return new google.visualization.DataTable(jsonData);

}

70

// Chart Object creation with the appropriate data sets and printing the JSON

format

$population=Population::getInstance();

$chart_births=New Chart('births');

$chart_births->AddSeries('births', $population->GetBirths());

$chart_births->AddSeries('projected', $population->GetBirths_Forecast());

$chart_births->PrintJSONData();

//JSON Data output for the Chart

{

"cols": [

 {"id": "0", "label": "year","type":"string"},

 {"id": "1", "label": "births","type":"number"},

 {"id": "2", "label": "projected","type":"number"}

],

"rows": [

 {"c":[{"v": "2007"},{"v": 97613},{"v": 95850}]},

 {"c":[{"v": "2008"},{"v": 99149},{"v": 97216}]},

 {"c":[{"v": "2009"},{"v": 96442},{"v": 94659}]},

 {"c":[{"v": "2010"},{"v": 90335},{"v": 88686}]},

]

}

// The very first function call which triggers all the rest

$chart_new=New Chart('births');

$chart_new->Draw();

//PHP JSON Data generator

function PrintJSONData() {

 $GUI=GUI::getInstance();

 $this->activelabels=array();

 $JSON = "{\n\"cols\": [\n";

 for ($i = 0, $columnid=0; isset($this->columns[$i]); $i++) {

 $yearkey=''; $yearkeys[0][0]=''; $columnid2=0;

 if($i==0) {

 if($this->charttype=="SteppedAreaChart" || $this-

>groupbymonth) $type="string";

 else $type="date";

 } else {

 $type="number";

 reset($this->dataseries[$this->columns[$i]]);

 while (list($key, $value) = each($this-

>dataseries[$this->columns[$i]])) {

 $haxisvalue=$key;

 if($this->groupbymonth) {

 $haxisvalue = substr($key, 5,2);

 $actyear=substr($key, 0,4);

 //if(self::CheckKeyIsAboveMinimal($key,

$i)) {

 if($yearkey!=$actyear) {

 $columnid++; $columnid2++;

 self::UpdateActiveLabels($columnid, "$actyear-", $i);

71

 $JSON_cols[]="\t{\"id\":

\"".$columnid."\", \"label\": \"".$this->activelabels[$GUI-

>lang][$columnid]."\",\"type\":\"$type\"}";

 $yearkey=$actyear;

 $yearkeys[$i][$columnid2]=$yearkey;

 }

 //}

 }

 $haxiskeys[$haxisvalue]=$key;

 }

 ksort($haxiskeys);

 }

 if($i==0 || !$this->groupbymonth) {

 self::UpdateActiveLabels($i, '', $i);

 $JSON_cols[]="\t{\"id\": \"".$i."\", \"label\":

\"".$this->activelabels[$GUI->lang][$i]."\",\"type\":\"$type\"}";

 }

 }

 $JSON .= implode(",\n",$JSON_cols)."\n\t],\n\"rows\": [\n";

 $rowcounter=0;

 while (list($key, $value) = each($haxiskeys)) {

 if(

 ($this->variantmode == "raw") ||

 ($this->variantmode == "ytd" && $key <=

$this->lastytdmonth) ||

 (strpos($this->variantmode, "mm"))

) {

 $addrow="\t{\"c\":[{\"v\":

\"".self::GetHAxisDateValue($key)."\", \"f\": \"".self::GetHAxisValue($key)."\"}";

 for($j=1, $k=1; isset($this->columns[$j]); $j++) {

 if($this->groupbymonth) {

 for($k=1; $yearkeys[$j][$k]; $k++) {

 $addrow.=self::addrowcell($j,

$yearkeys[$j][$k]."-$key");

 }

 } else {

 $addrow.=self::addrowcell($j, $key);

 }

 }

 $addrow.="]}";

 $JSON_rows[] = $addrow;

 }

 $rowcounter++;

 }

 return $JSON.implode(",\n",$JSON_rows)."\n\t]\n}";

 }

72

// JavaScript

function updateparamchart(dataseries) {

 $.ajax({

 type: "POST",

 url: "/includes/ajax.php",

 data: {getdataseries: dataseries},

 dataType: 'json',

 cache: false,

 success: function(result) {

 $(".slider-vertical-container").each(function() {

 var row=$(this).children (".slider-haxis").text();

 if(typeof result[row] !== 'undefined') {

 $(this).children(".slider-vertical").slider({

 value: result[row]

 });

 $(this).children (".slider-value").text(result[row]);

 }

 });

 }

 });

};

Singleton Object

include(BASEDIR."/includes/User.class.php");

 $User=User::getInstance();

 if(isset($_SESSION["obj"]["user"])) $User->unserialize2($_SESSION["obj"]["user"]);

class User {

 private static $INSTANCE;

 public $username;

 protected $email;

 protected $groups;

 public function getInstance(){

 if(!self::$INSTANCE) {

 self::$INSTANCE = new self();

 }

 return self::$INSTANCE;

 }

 private function __construct(){

 }

 public function serialize2() {

 return serialize(get_object_vars($this));

 }

 public function unserialize2($data) {

 $data=unserialize($data);

 if (is_array($data)) {

 foreach ($data as $k => $v) {

 $this->$k = $v;

 }

 }

 }

73

SimulationModel’s Build Up

private function __construct(){

 if(isset($_SESSION["obj"]["simulationmodel"]))

self::unserialize2($_SESSION["obj"]["simulationmodel"]);

 elseif(count(array_keys($this->DataSets))<2) {

 self::BuildUpModel();

 }

}

private function BuildUpModel() {

 GLOBAL $db;

 $query="SELECT * from datasets where disabled=0 order by isderived";

 $res=$db->rq($query);

 for($i=1; $r=$db->fetch($res); $i++) {

 if($r["isderived"]==0) {

 self::AddDataSet($r);

 } else {

 self::AddDerivedDataSetChilds($r["id"]);

 }

 }

 $query="SELECT * from chartsandseries where disabled=0 and datasetid>0";

 $res=$db->rq($query);

 $types[1]="actual";

 $types[2]="projected";

 for($i=1; $r=$db->fetch($res); $i++) {

 $seriesnameonchart = (isset($r["seriesnameoncharten"])) ?

$r["seriesnameoncharten"] : $types[$r["typeid"]];

 if($r["typeid"]==1)

 self::AssignSeriesToChart($r["datasetuniquename"], "actual", $seriesnameonchart,

$r["chartshortname"]);

 if($r["typeid"]==2)

 self::AssignSeriesToChart($r["datasetuniquename"], "projected",

$seriesnameonchart, $r["chartshortname"]);

 if($r["isparameter"])

 self::AssignDataSetToParamChart($r["chartshortname"], $r["datasetuniquename"]);

 if($r["isderived"]) self::AssignDerivedToChart($r["datasetuniquename"],

$r["chartshortname"]);

 }

}

Saving all charts’ thumbnails JavaScript

getallchartnames();

chartstosave=Array();

function getallchartnames() {

 $.post("/includes/ajax.php", {getallchartnames: true}).done(function(data

) {

 chartstosave = jQuery.parseJSON(data);

 opensaveandclose(0);

 });

}

function opensaveandclose(i) {

 if(i>0) AddOrRemoveChart(chartstosave[i-1], 0, 0);

 if(chartstosave[i]) AddOrRemoveChart(chartstosave[i], 0, 0);

 i++;

 window.setTimeout("massivesave();", 3000);

 window.setTimeout("opensaveandclose("+i+")", 6000);

}

74

function massivesave() {

 for(var key in charts) {

 if(charts[key][0]!='parameter')

 setTimeout("savechart('"+key+"');",100);

 }

}

function savechart(container) {

 $.post("savechart.php", { filename: container,

imagedata:rendercanvas(container) }).done(function(data) { });

}

function rendercanvas(container) {

 chart_area = document.getElementById(container);

 svg = $("#"+container).children().children().html();

 canvas = document.getElementById("hiddencanvas");

 canvas.setAttribute('width', chart_area.offsetWidth);

 canvas.setAttribute('height', chart_area.offsetHeight);

 canvg(canvas, svg);

 image_data_uri = canvas.toDataURL("image/png");

 canvas.setAttribute('width', 1);

 canvas.setAttribute('height', 1);

 return image_data_uri;

}

Exporting database for SPSS

function generate_csv() {

 global $db;

 $regscript = fopen('output/regrscript.txt', 'w+');

 $imax=0;

 $csvoutput="year,";

 $columnlist=Array();

 $query="SELECT id,tablename,columnname,datasetuniquename from datasets

where frequency='monthly' and disabled=0 and isderived=0";

 $res=$db->rq($query);

 for($i=0; $r=$db->fetch($res); $i++) {

 $csvoutput.="ds".$r["id"]."_raw,";

 $csvoutput.="ds".$r["id"]."_1m,"; $columnlist[$i].="

ds".$r["id"]."_1m";

 $csvoutput.="ds".$r["id"]."_3m,"; $columnlist[$i].="

ds".$r["id"]."_3m";

 $csvoutput.="ds".$r["id"]."_12m,"; $columnlist[$i].="

ds".$r["id"]."_12m";

 //generate_regressionscript($regscript, "ds".$r["id"]."_raw",

$r["datasetuniquename"], $columnlist);

 $query2="SELECT year,".$r["columnname"]." from ".$r["tablename"]."

where year>'2007-01-01' order by year";

 $res2=$db->rq($query2);

 for($j=0; $r2=$db->fetch($res2); $j++) {

 $key=substr($r2["year"], 0,7);

 $k=-1;

 $output[$key][$i][++$k]=$r2[$r["columnname"]];

 $output[$key][$i][++$k]=0+$output[DataSet::AddYearMonthToKey($key, 0, -

1)][$i][0];

 $output[$key][$i][++$k]=0+$output[DataSet::AddYearMonthToKey($key, 0, -

3)][$i][0];

 $output[$key][$i][++$k]=0+$output[DataSet::AddYearMonthToKey($key, -1,

0)][$i][0];

 }

 }

 $query="SELECT id,tablename,columnname,datasetuniquename from datasets

where frequency='monthly' and disabled=0 and isderived=0";

75

 $res=$db->rq($query);

 for($i=0; $r=$db->fetch($res); $i++) {

 if($i>0) {

 $columnlist[count($columnlist)]=$columnlist[0];

 array_shift($columnlist);

 }

 $columnlist2="";

 for($j=0; $columnlist[$j]; $j++) {

 $columnlist2.=$columnlist[$j];

 if($j%6==5) $columnlist2.="\n";

 }

 generate_regressionscript($regscript, "ds".$r["id"]."_raw",

$r["datasetuniquename"], $columnlist2);

 }

 $csvoutput.="\n";

 $imax = ($i>$imax) ? $i-1 : $imax;

 ksort($output);

 $fp = fopen('output/file.csv', 'w+');

 foreach ($output as $key => $value) {

 $csvoutput.="$key-28,";

 for($i=0; $i<=$imax; $i++) {

 for($j=0; $j<=$k; $j++) {

 $csvoutput.=$output[$key][$i][$j].",";

 }

 }

 $csvoutput.="\n";

 }

 fwrite($fp, $csvoutput);

 fclose($fp);

 fclose($regscript);

}

